Clytia hemisphaerica

Overview
Full NameClytia hemisphaerica
GenusClytia
Specieshemisphaerica
Common NameJellyfish
AbbreviationC. hemisphaerica
Interest
Clytia hemisphaerica

is a hydrozoan–group cnidarian with both a colonial, vegetatively propagating polyp stage and free-living, sexual medusae. The initial scientific motivation to develop Clytia in the early 2000s came from a group investigating embryo polarity development (E. Houliston and colleagues). Sequence resource development was shared with an Evo-Devo group (M. Manuel and colleagues) seeking a medusa-bearing model from the Cnidaria, The evolutionary interest of the medusa lies in many complex features including striated muscle and sense organs that are absent in the polyp and thus from the main cnidarian molecular models (Nematostella, Hydra). Villefranche zoologist Danièle Carré proposed Clytia based on availability and cultivability. Clytia (= Phialidium) species are common world-wide, and had previously been studied in a variety of domains, including a large body of experimental embryology by G. Freeman. In recent years, Clytia has helped answer questions including regulation of oocyte maturation, origins of embryo polarity and evolution of Hox genes and striated muscle. It has potential to provide a powerful model in many domains (cell/developmental biology; evolution, ecology), and also as teaching/ outreach tool.

Distribution

Mediterranean Sea and North-East Atlantic

Attractive features
  • Transparent eggs, embryos, larvae and medusae for microscopy
  • Embryos large enough (180µm diameter) for easy micromanipulation
  • Small jellyfish (1cm in diameter)
  • Short life cycle (2-3 months) including a vegetative polyp stage, which provides a continuous supply of genetically identical jellyfish
  • Convenient light-induced spawning and peptide-induced metamorphosis
Tools
  • Assembled genome sequence (450 MB) and many transcriptome resources soon available
  • Self-crossed immortal polyp colonies available which can be easily distributed as ‘cuttings’ of the immortal polyp colonies between labs
  • Gene knockdown is routine and gene edited colonies are being successfully developed
Selected references
  • Carre, D. and Carre, C. (2000) Origin of germ cells, sex determination, and sex inversion in medusae of the genus Clytia (Hydrozoa, leptomedusae): the influence of temperature. J Exp Zool 287, 233-42 Freeman, G. The role of polarity in the development of the hydrozoan planula larva. Wilhelm Roux's Archives 190, 168-184 (1981).
  • Houliston, E., Momose, T. Manuel, M. (2010). Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends Genet 26, 159-167
  • Lapébie, P et al (2014). Differential Responses to Wnt and PCP Disruption Predict Expression and Developmental Function of Conserved and Novel Genes in a Cnidarian. PLoS Genetics, 10(9): e1004590. doi:10.1371/journal.pgen.1004590
  • Steinmetz, P.R. et al. (2012). Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487, 231-234
Count Summary
The following features are currently present for this organism
Feature TypeCount
Scaffolds7,644
Genes45,872
Transcripts73,855
Proteins25,087
Transcript Browser
The following browser provides a quick view for new visitors. Use the searching mechanism to find specific features.
NameUnique NameType
TCONS_00003201TCONS_00003201transcript
TCONS_00003202TCONS_00003202transcript
TCONS_00003203TCONS_00003203transcript
TCONS_00003204TCONS_00003204transcript
TCONS_00003205TCONS_00003205transcript
TCONS_00003206TCONS_00003206transcript
TCONS_00003207TCONS_00003207transcript
TCONS_00003208TCONS_00003208transcript
TCONS_00003209TCONS_00003209transcript
TCONS_00003210TCONS_00003210transcript
TCONS_00003211TCONS_00003211transcript
TCONS_00003212TCONS_00003212transcript
TCONS_00003213TCONS_00003213transcript
TCONS_00003214TCONS_00003214transcript
TCONS_00003215TCONS_00003215transcript
TCONS_00003216TCONS_00003216transcript
TCONS_00003217TCONS_00003217transcript
TCONS_00003218TCONS_00003218transcript
TCONS_00003219TCONS_00003219transcript
TCONS_00003220TCONS_00003220transcript
TCONS_00003221TCONS_00003221transcript
TCONS_00003222TCONS_00003222transcript
TCONS_00003223TCONS_00003223transcript
TCONS_00003224TCONS_00003224transcript
TCONS_00003225TCONS_00003225transcript

Pages